
HeadTracker: Fine-Grained Head
Orientation Tracking System Based

on Headphones

Jinpeng Song1, Haipeng Dai1(B), Shuyu Shi1, Lei Wang2, Haoran Wan1,
Zhizheng Yang1, Fu Xiao3(B), and Guihai Chen1(B)

1 Department of Computer Science and Technology,
Nanjing University, Nanjing, China

{jinpengsong,wanhr,yzz}@smail.nju.edu.cn,
{haipengdai,ssy,gchen}@nju.edu.cn

2 Department of Computer Science and Technology, Peking University, Bejing, China
wang l@pku.edu.can

3 School of Computer Science, Nanjing University of Posts and Telecommunications,
Nanjing, China

xiaof@njupt.edu.cn

Abstract. Head orientation tracking has many potential applications in
various fields, e.g., online courses, online meetings, and somatosensory
games. Undoubtedly, with the information of the user’s head orientation,
these applications will have more opportunities to enhance performance
and provide better user experience. However, reviewing existing works
regarding head tracking, the CV-based solutions have limited tracking
angle range and privacy issues and the IMU-based solutions have accu-
mulated errors. None of these methods provide accurate and stable user
head orientation. In this paper, we propose HeadTracker, a fine-grained
3D head orientation tracking system based on a single headphone. Head-
tracker achieves high-precision head orientation tracking by installing
ultrasonic transmitters on an ordinary headphone and deploying ultra-
sonic receivers in the environment. We conducted experiments to evalu-
ate the performance of HeadTracker in the real use environment, and the
experimental results show that the system can achieve an average error
of 6◦ in the 3D head orientation tracking. To the best of our knowledge,
HeadTracker is the first system to use head-mounted ultrasound device
to achieve 3D head orientation tracking and achieves the state-of-the-art
in this category.
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1 Introduction

User tracking, which refers to locating users in real time, has become the focus of
many research work in recent years [2,5,6,9,12]. Nevertheless, most user tracking
systems only focus on the user’s location but ignore the user’s head orientation,
which can reveal important and valuable information, such as the user’s attention
and intent. If the user’s accurate 3D head orientation can be obtained in real
time, we can envision and expect its wide usage in many scenarios. For example,
in online courses scenarios, we can know where the students’ attention is through
their head orientation. In addition, it also has promising usage in motion-sensing
games as an alternative to mouse and keyboard. Besides, in driving scenarios,
we can implement many intelligent driving applications such as estimating the
driver’s intention based on his head orientation.

According to our survey, most of the existing head orientation tracking work
is based on computer vision [1,10,13]. These CV-based solutions can only achieve
a small range of head tracking due to the narrow angle of view of camera, and
they are severely affected by environmental factors such as light. Moreover, the
use of cameras will bring certain privacy risks. There are also some IMU-based
head tracking solutions [6], but such solutions are limited by the cumulative error
of the six-axis IMU and need to be continuously calibrated in use. Although the
nine-axis IMU addresses the cumulative error problem to a certain extent [4,8],
it is seriously affected by the external magnetic field [3]. Most importantly, both
of the CV-based solutions and the IMU-based solutions obtain head orientation
in their own internal coordinate system, which is difficult to be converted to the
world coordinate system for interaction with other devices. Besides, there are some
solutions based on microphone arrays [15,16], but the accuracy of these solutions
are relatively low.

Fig. 1. HeadTracker

In this paper, we propose HeadTracker (Fig. 1), a fine-grained 3D head ori-
entation tracking system based on headphones. Compared with other existing
work, HeadTracker significantly improves the accuracy of head orientation track-
ing. On the hardware side, we add two ultrasonic transmitters to both sides of
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an ordinary headphone and deploy some ultrasonic receivers in the environment
to complete the positioning of the headphone. On the software side, we design
several algorithms to calculate the head orientation and keep the system running
smoothly. Specifically, the contributions of our paper are as follows:

1) We use the Zadoff-Chu sequence as the baseband signal and modulate it to
the ultrasound band as our transmitting signal. We demodulate it on the
receiving side, and decompose different paths from the accurate CIR. On
this basis, we design a frequency division multiplexing method to realize the
simultaneous positioning of two transmitters.

2) To solve the problem that signal direct path is easily blocked, we borrow
the idea of GPS satellite positioning systems [7]. That is, we deploy multiple
receivers in the environment and propose a receiver selection algorithm based
on signal quality to accomplish positioning.

3) We use neural network to design a special head orientation tracking algorithm
based on head movement recognition, which enables approximately 6-DoF
head orientation tracking using only two coordinates on the head.

The remaining of this paper is organized as follows. In Sect. 2, we describe
the system design and processing flow of our proposed approach HeadTracker
in detail. Then, we introduce the deployment of the system and conduct a large
number of experiments to evaluate the effectiveness of it in Sect. 3. Finally, we
conclude this paper in Sect. 4.

2 System Design

In this section, we introduce the technical details of the HeadTracker. The system
mainly consists of four modules: signal process, headphone positioning, movement
recognition, and orientation calculation, as depicted in Fig. 2.

Signal Processing Orientation CalculationMovement RecognitionHeadphone Positioning

Bi-LSTM

ClassificationCIR

ZC Modulation

ZC Demodulation

Receiver Selection

Signal Quality

Ranging

Positioning
Head Orientation

Pivot Point

Head Movement
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Fig. 2. Overview of HeadTracker
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2.1 Signal Progressing

Signal Design. We use ZC sequences as baseband signal as ZC is a kind of
CAZAC (Constant Amplitude Zero AutoCorrelation waveform), which means
ZC sequences have ideal auto-correlation properties [11,14]. Compared with the
common CW (Continuous Wave) signal, ZC signal can separate paths at different
distances and reduce the influence of multipath. And compared with the FMCW
(Frequency Modulated Continuous Wave) signal, ZC signal has better range
resolution. We modulate the ZC sequence by a sinusoid carrier at the transmitter,
and the mathematical form of the ZC sequence is

ZC[n] = e
−j

πun(n+cf +2q)
NZC , (1)

where NZC is the length of ZC sequence, the value range of n is 0 ≤ n < NZC ,
and cf takes 0 or 1 as the remainder of NZC modulo 2. The ZC sequence contains
two integer parameters q and u. Generally, q is set to 0, and the ZC sequence
degenerates into Chu sequence. Moreover, u is in the range [0, NZC ], and it is
relatively prime to NZC .

ZC Modulation and Demodulation. In the process of signal modulation
and demodulation, we use an OFDM-based interval interpolation method, which
makes it possible to modulate two different ZC sequences to the same center fre-
quency. Similarly, in the demodulation process of the received signal, we use the
frequency domain interval sampling method to separate the two ZC sequences
from the same received signal.

We know that according to the characteristics of the ZC sequence, the auto-
correlation result of the ZC sequence is non-zero only at t = 0, which ideally will
be a Dirac impulse function δ (t) and is a sinc function practically due to limited
bandwidth. Because the received signal is composed of multiple transmitted
signals with different time delay versions through multiple different paths, the
result of cross-correlation between the transmitted signal and the received signal
is h (t), which is a combination of δ (t − τi) signals with different time delays τi:

h (t) =
P∑

i=1

Aie
−jφi(t)δ (t − τi) , (2)

where P is the number of paths, Ai is the signal strength of signal path i, and
φi is the phase offset of the signal on path i. And we use Dirac function here
for convenience. We can express the channel impulse response (CIR) as h (t), as
shown in Fig. 3.
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Fig. 3. CIR

Ranging. The abscissa of the CIR corresponds to the delay, while the ordinate
corresponds to the cross-correlation value between transmitted signal ZC [t] and
ZC [t − τi], which is transmitted signal after a certain delay τi. The larger the
cross-correlation value, the stronger the delayed signal. Generally, the path cor-
responding to the highest peak of the CIR is the direct path in the case that it
is not blocked. So we can calculate the direct path using the following equation:

d = arg max
1<=i<=L

2

CIR [i]
c

fs
, (3)

where L is the length of CIR. Therefore, after ranging, we can obtain the straight-
line distance between each transmitter and each receiver, which makes prepara-
tions for our subsequent positioning work.

2.2 Headphone Positioning

Receiver Selection. As is well known, a major challenge for ultrasonic posi-
tioning in practice is that the direct path of sound waves between transmitter and
receiver can be blocked frequently. To solve this challenge, we refer to the idea
of satellite positioning systems like GPS, which is to deploy multiple satellites
in orbit to achieve full coverage of the ground. Similarly, we can deploy multiple
ultrasonic receivers in the environment so that no matter how the user’s head
rotates and moves, the direct path between each transmitter and at least three
receivers is not blocked. To this end, we propose a receiver selection algorithm
by which the system will select the most suitable three receivers to position-
ing the transmitter each time. Firstly, we propose an indicator named SNRlos,
which is used to evaluate the signal quality between receivers and transmitters.
Formally, SNRlos is defined as the ratio of the amplitude of the highest peak to
the average of all other peaks’ amplitude in the CIR.

SNRlos =
max CIR [i]

∑L
2
i=1 CIR [i] − max CIR [i]

. (4)
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Positioning. After the receiver selection, each transmitter has found the three
most suitable receivers. According to the triangulation method, knowing the dis-
tance between a certain point and three known anchor points, a ternary quadratic
equation can be established to calculate this point’s coordinates:

f =

⎧
⎪⎨

⎪⎩

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 − d21

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 − d22

(x − x3)
2 + (y − y3)

2 + (z − z3)
2 − d23,

(5)

where (x, y, z) is the position of the transmitter, (xi, yi, zi) is the position of
selected receiver, and di is the distance between the transmitter and receiver
measured by ultrasonic ranging. We use Newton’s iterative method to solve this
ternary quadratic equation system. To improve the calculation speed, we set the
initial iteration value of each positioning as the result of the last positioning,
which can greatly reduce the number of iterations. Generally, each positioning
can be completed only after three or four iterations in this way. After positioning,
we can obtain the trajectory data of the headphone, which can be used to identify
the current movement of the head.

2.3 Movement Recognition

Roll

Yaw

Pitch

Surge

Heave

Sway

Fig. 4. Head movements
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Fig. 5. Bi-LSTM

Movement Definition. We know that a rigid body has six degrees of freedom
in three-dimensional space. We use the definition in the field of navigation to
describe these movements, which are the three translational movements (surge,
sway, and heave) and the three rotational movements (roll, pitch, and yaw), as
shown in Fig. 4. Specifically, surge, heave, and sway are the translation move-
ments along the x-axis, z-axis, and y-axis, respectively; roll, yaw, and pitch are
the rotation movements around the x-axis, z-axis, and y-axis, respectively.

We ignore overly complicated head movements here as we believe that the
six basic movements account for the vast majority in our daily life, while other
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complex movements are relatively rare. Besides, adding other uncommon move-
ments will increase the complexity of the classification model and reduce the
overall classification performance, which we think is not worth the gain.

Classification Model. Head movements recognition is a classification task with
the data of headphone trajectory. Since trajectory is a kind of time series data,
we adopt Bi-LSTM as the classification model to complete this classification
task. Bi-LSTM is a special kind of recurrent neural network that has a good
representation ability for the time series data. Its excellent performance has
been proven in many fields such as speech recognition. Bi-LSTM combines the
forward LSTM with the backward LSTM as shown in Fig. 5. Therefore, Bi-LSTM
can make better use from the information of the subsequent data compared with
traditional LSTM.

In this step, we use the headphone trajectory as training data to train a clas-
sification model, which can be used to identify the ongoing head movement. After
obtaining the head movement, we can calculate the head orientation according
to some head movement rules, which is the next step of our system.

2.4 Orientation Calculation

Clearly, to determine the posture of an object in three dimensions, at least the
coordinates of three different points need to be known. The posture of the rigid
body is not unique with only two coordinates, because it can rotate around the
axis formed by the two points. But after headphone positioning we can only
obtain two points on the head, now the problem is how to estimate the head
posture based on the positions of only two points?

Fig. 6. Pivot point Fig. 7. Rotation

In fact, the head is not an object that can move freely in three-dimensional
space, which is limited by its connection to the body. By observing and analyzing,
we find some rules of head movement. That is, the movement of the human head
are carried out around a point in the neck, we call it the pivot point (Fig. 6). The
position change of the pivot point is closely related to the head’s movements.
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When the head is only rotating without moving, the absolute position of the
pivot point is almost unchanged (Fig. 7). When the head is only moving without
rotating, the relative position of the pivot point and the headphone remains
almost unchanged. Therefore, these rules give us the possibility to determine
the position of the pivot point by the head’s movement. The relative position
between the pivot point and the headphone is unchanged for a person, which
is determined by the bones of the head and neck. So we only need to initialize
the pivot point once at the beginning and then we can update it in real time
according to the movement of the head.

The pivot point position updating formula is expressed as follows:

Ppivot =

{
Pleft+Pright

2 − Vrelative M ∈ {surge, sway, heave}
Ppre M ∈ {roll, pitch, yaw, static} ,

(6)

where Ppivot is the position of the current required pivot point, Pleft and Pright

are the positions of two transmitters, Vrelative is the vector between the midpoint
of the two transmitters and the pivot point, Ppre is the position of the pivot point
in the previous frame, and M is the ongoing movement of the head.

We now have the coordinates of the three points on the head in total, i.e.,
the pivot point and two transmitters. Sequentially, we can calculate the head
orientation according to the following formula:

Vorientation = (Pright − Ppivot) × (Pleft − Ppivot) . (7)

3 Implementation and Evaluation

3.1 Implementation

(a) Headphone (b) Piezoceramics

(c) Coaxial line (d) NI I/O device

Fig. 8. Hardware Fig. 9. Experimental scene

Figure 8 shows the devices used in our experiment. We choose piezoelectric
ceramics as the transmitter and receiver of ultrasonic waves. We install the two
receivers on both sides of the headphone and install the receivers in the envi-
ronment. We use Murata MA40H1 piezoelectric ceramics as sound sources for
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transmitting and receiving ultrasonic waves. The I/O device we use is USB-6356
produced by National Instruments, which can support up to 2 analog signal out-
puts and 8 analog signal inputs. These piezoelectric ceramics are connected to
I/O device through coaxial cables and the experimental scene is shown in Fig. 9.
In the part of software, we use MATLAB to drive the device for signal acquisi-
tion and data processing. In the experiment, we set the center frequency of ZC
signal to 40 KHz with 96 KHz sampling rate, which is far beyond the hearing
range of human ears. As for the cost of this system, we admit that the price will
be higher than other solutions, such as CV and Bluetooth. We are studying how
to complete this task with the help of loudspeakers and microphones commonly
used in life to reduce costs.

3.2 Performance of Head Movement Recognition

We collect a data set of more than 7000 trajectories information to evaluate the
performance of the head movement recognition module. There are about 1000
trajectories for each type of movements, each of which is a two-second coordinate
sequence of two transmitters. Specifically, 80% of the data in the dataset is used
to train the model while the remaining 20% is used for testing. According to the
confusion matrix in Fig. 10, the average classification accuracy on the dataset is
more than 99%. For a single head movement, the one with the lowest accuracy
is pitch, which achieves the accuracy of 98.64%, and the one with the highest
accuracy is sway, roll, yaw and static movements, which reach 100%. It can be
seen that the classification accuracy of the two movements (i.e., surge and pitch)
are relatively low compared with others. This is also in line with our intuition,
because surge is the forward and backward translation of the head, and pitch
is the forward and backward rotation of the head. The two movements are very
similar when the movement range is not large, so they are easy to be confused.

Fig. 10. Confusion matrix of head movement recognition
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As for the reason why the classification result is so accurate, we believe that
it can be attributed to the strong representation ability of Bi-LSTM for time
series data, the sufficient training data and the simple classification task.

3.3 Performance of Head Orientation Tracking

Fig. 11. Results of head orientation tracking

To get the groundtruth the head is facing, we use a nine-axis IMU (including
accelerometer, gyroscope, and magnetometer). We attach this IMU to the same
headphone together with the HeadTracker system. This IMU can feed back the
three-axis angle changes of the head to us in real time. Based on this, we can
calculate the orientation of the head as the groundtruth. We then compare the
groundtruth with the HeadTracker measurements to evaluate the performance
of the system. However, as we mentioned earlier, the IMU has the problem of
cumulative error, which can adversely affect the experimental results. To reduce
the influence of the cumulative error of the IMU, we try to shorten the duration
of each experiment, which is about 20 s to 60 s. During each experiment, the
participants are first told what to do and then put on the equipment with the help
of the experimenter. The participants will repeat the following actions during the
experiment: surge, sway, heave, roll, pitch, and yaw. During the experiment, we
record the groundtruth of the IMU and the measurements of the HeadTracker
in real time at ten frames per second.

We conduct a total of 6 groups of experiments. The system samples the head’s
orientation at a frequency 10 Hz during the volunteer’s rotation. Figure 11(a)
shows the error of the 6 groups. From the figure, it can be seen that the median
error of each experiment is between 3◦ and 7◦, and the maximum error is about
17.5◦. According to the calculation, the average error of these 6 groups is about
6◦. Figure 11(b) shows the CDF of the errors of all groups, where the 50% error
of data is less than 7◦ and the 90% error of data is less than 12◦.
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3.4 Impact of Speed

Fig. 12. Results for different rotation speeds

We also conduct experiments at different rotation speeds. First of all, according
to the habit of human head rotation, we divide head’s rotation speed into low
speed, medium speed, and high speed. Low speed means that the rotation speed
is about 1.5 degrees per second, medium speed is about 3 degrees per second, and
high speed is about 9 degrees per second. We let the volunteer rotate the head at
different speeds, and then evaluate the head orientation tracking performance.
Figure 12 shows the experimental results at different rotation speeds.

It can be seen from Fig. 12(a) that the error of low-speed rotation is smaller
than that of medium-speed rotation, and the error of medium-speed rotation
is smaller than that of high-speed rotation. Regardless of the average value,
median, maximum value, and other indicators for comparison, the result of low-
speed rotation is almost always the best. Figure 12(b) also shows that the error
of low-speed rotation is the smallest, achieving a result that the 50% error of the
data is less than 5◦ and the 90% error of the data is less than 12◦. The results
are in line with our intuition, because the lower the rotation speed, the more
stable the head is, the easier it is to control the head orientation.

3.5 Impact of Participants

Considering that the performance of our HeadTracker system is closely related to
the user’s physiological characteristics, especially the size and shape of the bones
in the head and neck, different users may bring different experimental results.
To evaluate the robustness of our system to users, we invite 10 participants (7
males, 3 females) to conduct the experiment (Fig. 13). These volunteers range
in age from 20 to 25. We let each participant wear the equipment to conduct
the same experiment and evaluate the results of these experiments. The results
of all experiments are shown in Fig. 14. Because of the different physiological
structure and head movement habits among people, there are some differences
between the results from different participants as shown in Fig. 14(a). Among
them, participant M5 has the largest average error (about 5◦), while participant
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(a) Male1 (b) Male2 (c) Female1 (d) Female2

Fig. 13. Different participants

Fig. 14. Results for different participants

M3 has the smallest average error (about 2.5◦). Moreover, the average error of
all the participants’ data is about 4◦, which is basically the same as the error we
measured above. These experiments show that HeadTracker is robust to different
participants. In addition, we count the head orientation errors of male and female
participants and draw the CDF of them in Fig. 14(b). We can see that the two
curves basically overlap, which prove that the results are almost not affected by
gender.

4 Conclusion

Users’ head orientation provides valuable information to various fields such
as online courses, online conferences, and somatosensory games. To effectively
obtain and utilize this information, we propose HeadTracker in this paper, which
is a fine-grained 3D head orientation tracking system based on a headphone. To
achieve high-precision tracking, we first install the ultrasonic transmitters on
the headphone and deploy the ultrasonic receivers in the environment to real-
ize the positioning of the user’s headphone. Then, we use the trajectory of the
headphone and Bi-LSTM to complete the recognition of the user’s head move-
ment. Finally, we calculate the real-time position of the pivot point based on
the head movement and then calculate the head orientation. Our experimental
results show that the average error of head orientation tracking is about 6◦ in
real environment, which is the best performance known at present and indicates
that our system has great development potential and application prospects.
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